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Its Application to Beam–Waveguide System

W. A. Imbriale, Fellow, IEEE,T. Y. Otoshi,Life Fellow, IEEE,and C. Yeh,Fellow, IEEE

Abstract—The conventional way of expressing power loss in
decibels/meter for a multimode waveguiding system with finite
wall conductivity (such as a beam–waveguide (BWG) system
with protective shroud) can be incorrect and misleading. The
power loss (in decibels) for a multimode waveguiding system is, in
general, not linearly proportional to the length of the waveguide.
New power-loss formulas for multimode system are derived in
this paper for arbitrarily shaped conducting waveguide tubes. In
these formulas, there are factors such as[exp(jx)�1]=(jx), where
x = (�a � �b)`, with �a and �b being the propagation constants
of the different propagating modes and` being the distance from
the source plane to the plane of interest along the guide. For a
large BWG supporting many propagating modes,�a’s are quite
close to�b’s, thus the mode coupling terms remain important for
a very long distance from the source plane. The multimode power-
loss formula for a large circular conducting tube has been verified
by experiments. This formula was also used to calculate the
additional noise temperature contribution due to the presence of
a protective shroud surrounding a millimeter-wave BWG system.

Index Terms—Beam waveguides, cylindrical waveguide, noise
measurement, waveguide theory.

I. INTRODUCTION AND THE CONSIDERATION

OF A FUNDAMENTAL CONCEPT

I N TEXTBOOKS on electromagnetics and guided waves,
the perturbation technique is used to calculate the attenu-

ation factor of a given propagating mode in a slightly lossy
and highly conducting hollow metallic waveguide. Based on
this technique, the attenuation constant for theth mode
due to conductor loss in a general cylindrical hollow metallic
waveguide is found to be [1]–[6]

(1)

where denotes the surface resistance of the metal walls,
and are the unperturbed electric and magnetic

fields for the th propagating mode in this waveguide with
perfectly conducting walls, denotes the real part of the
integral, is the unit vector in the -propagating direction,
* denotes the complex conjugate of the integral, is the
contour around the cross section of the waveguide, and
is the cross-sectional area of the waveguide. Here,
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expressed in nepers/meter is the attenuation constant for the
th propagating mode per unit length of the waveguide.
A more accurate determination of the attenuation constant

can be obtained through the boundary-value-problem
approach. Here, the fields in different regions [i.e., the metal
region characterized by , , and the vacuum region
characterized by , ] of the waveguide are matched
at the boundary, yielding a dispersion relation from which
the complex propagation constant for each mode may be
determined. For this approach, in general, all field components
must be assumed to be present. In other words, for a hollow
circular metal pipe, the field components (, , , ,

, ) will all be present when circular symmetry of the
mode is not present. Here, the circular cylindrical coordinates
( , , ) are assumed. This was the approach (called the
hybrid-mode approach) used by Chou and Lee to calculate
modal attenuation in multilayered coated waveguides [7].
Other improved versions of the perturbation formula of (1)
for the attenuation constant of a single mode were given by
Gustincic [8] and Collin [2].

The intent of this paper is not to improve the power-loss
calculation for a single mode. One notes that, for the small
loss case, this improvement is negligible. The intent of this
paper is to provide a correct way of finding the power loss
for the multimode case.

In all of the above considerations, the power loss has always
been expressed by for each th mode in nepers/meter.

It is the limitation of this way of expressing power loss that
we wish to address in the following sections.

When a single mode, say theth mode, is propagating in
this hollow waveguide, the following expression is normally
used to represent the power carried by this mode along this
waveguide structure:

(2)

where is the initial input power of the th mode and is
the distance along the guide. That this expression is valid if and
only if a single mode is propagating alone in this waveguide
is usually glossed over in the textbooks. Furthermore, (1)
and (2) offer the impression that the power loss in a given
waveguide may be expressed by the attenuation constant
in nepers/meter. From (2), for small attenuation, the power
loss is

(Power Input) (Power Output)
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Consequently, one may obtain the mistaken impression that
since the modes are orthogonal, the total loss is additive
when more than one mode is present simultaneously in the
waveguide; after all, we know that the total power is additive.
For the multimode propagation case, the total power loss
should not be expressed through an attenuation constant as
certain nepers/meter (or decibels/meter). Indeed, due to the
contributions of the cross-product terms in where
is the total surface current, and the total power loss in the
multimode case is no longer a linear function of the length of
the guide, as in the single-mode case.

For example, assume that a given source in an infinitely long
hollow conducting waveguide excites two equal amplitude
lowest order propagating modes. Further assume that the wave-
guide can only support these two lowest order propagating
modes. The walls of the waveguide are made with highly
conducting (but not perfectly conducting) metal. Let us find
the total power loss at a distancefrom the source plane.

According to the classical textbook formula (1), the at-
tenuation constant for each mode can be calculated using
this formula. Say the answer for mode 1 is
(nepers/meter) and for mode 2 is . (Even if we
use the more exact way of calculating the attenuation constant
by the boundary-value-problem approach (or the hybrid-mode
approach) described in [1], due to the highly conducting nature
of the walls, the attenuation constants for these two modes
would not deviate much from the given values). Letbe the
input power for mode 1 as well as for mode 2. Thus, the power
of mode 1 after propagating for a distancein the waveguide
is and for mode 2 is . Since
the power is additive, the total power loss is

(3)

Extending this concept to modes would yield

Thus, according to the above formula, no matter how small
or is, is proportional to . To demonstrate that

this concept is incorrect, consider the following: a high-gain
horn radiating inside a waveguide with boresite along the axis
of the waveguide. If the modes are considered to be uncoupled,
then the loss for each mode can be independently computed
and summed. Therefore, the power loss per unit length would
be independent of the position in the waveguide. A simple
thought experiment should be sufficient to conclude that if
the diameter became larger and larger, one would certainly
expect the loss per unit length in a region near the plane of
the horn aperture (where there is virtually no radiation from
the horn) to be quite different from the loss at a distance
where the radiation pattern from the horn would illuminate
the waveguide walls. This is very similar to the experiment
described later in this paper. A correct interpretation of the
perturbation theory would be to apply it to the total tangential

field on the waveguide wall. Since the power loss formula
uses tangential squared, the modal fields are thus coupled

Fig. 1. View of Jet Propulsion Laboratory’s (JPL’s) DSS-13 BWG antenna.

through this term resulting in a waveguide loss which varies
as a function of the axial dimension. The results are precisely
what one would expect for the horn example, i.e., very little
loss very near the aperture plane and increasing significantly
when the radiation pattern of the horn intersects the waveguide
wall. Using this approach, the resultant theoretical/numerical
data compares very favorably with the measured experimental
data.

Therefore, the purpose of this paper is to address the power-
loss problem when more than one mode is simultaneously
present in the waveguide. This effort is motivated by our
desire to verify the measured data for a millimeter-wave
beam–waveguide (BWG) with a protective shroud consisting
of sections of a round conducting tube, as shown in Fig. 1.
Solution of this problem is of great importance in optimiz-
ing the design to yield minimum noise temperature for the
NASA/Deep Space Network’s low-noise microwave receiving
system [9].

II. FORMULATION OF THE PROBLEM AND FORMAL SOLUTION

Shown in Fig. 2 is the geometry of the canonical problem. A
uniform conducting waveguide of arbitrary cross section with
its axis aligned in the -direction has a length. In the
plane, the transverse electric field is assumed to be
given. Thus, the amplitudes of all the modes (propagating and
evanescent modes) can be calculated [1]–[5] and are assumed
to be known. We wish to calculate the power loss of the fields
due to the imperfect conductivity of the wall with intrinsic
wave resistance (surface resistance).
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Fig. 2. Geometry of the problem.

From Ohm’s Law and Poynting’s vector theorem, the power
loss is given by [1]–[6]

(4)

where

surface current density on the wall;
unit vector normal to the wall surface;
total magnetic field in the waveguide;
surface area of the wall

or

(5)

where is the component of the total magnetic field which
is tangential to the wall surface. It is known that in a hollow
arbitrarily shaped uniform waveguide with a conducting wall
there can exist two sets of eigenmodes: [1]–[6] transverse
electric (TE) modes and transverse magnetic (TM) modes with
a specific propagation constant for each mode. The total fields
for TE modes are

(6)

(7)

where and are connected through
the Maxwell’s equations and is the propagation constant
of the th TE eigenmode, and the total fields for TM modes
are

(8)

(9)

where and are connected through
Maxwell’s equations and is the propagation constant
of the th TM eigenmode. and are arbitrary
amplitude coefficients for TE and TM modes. The subscript
indicates the transverse components of the field (transverse to
the -direction). The index is used to tally the modes—it
does not necessarily correspond to mode order. One notes that

may take on negative values, indicating modes propagating
in the opposite direction.

Substituting (6)–(9) into (5) yields

(10)

Here, is the contour around the inner surface of the wave-
guide, which is also normal to the-axis (see Fig. 2). The
subscript represents the component of the transverse field
that is tangential to the contour, is the number of TE
propagating modes, is the number of TM propagating
modes and , , , are mode indices. Simplifying (10)
gives

[Part 1] [Part 2] (11)

with (12) and (13), shown at the bottom of the following page,
where

(14)

It should be noted that is always purely real.
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One should point out that all the field components used in
the above expressions are assumed to be the field components
for a perfectly conducting waveguide. The use of surface
resistance and Ohm’s Law to calculate the total power loss
is an application of the perturbation technique.

Using the orthogonality properties of these field compo-
nents, one can show that the total power carried in a multimode
waveguide is the sum of the power carried by each propagating
mode in this multimode waveguide. On the other hand, (11)
shows that power losses or attenuation of different simultane-
ously existing modes are not simply additive, as indicated by
the first bracketed term [Part 1]. The correct expression must
include the second bracketed term [Part 2], which shows the
cross-product terms. Indeed, the use of an attenuation constant
to describe power loss in a waveguide should be limited to
the single-mode unidirectional propagation case only, because
only for this case is the power loss linearly dependent on the
length of the guide. For the multimode propagation case, the
power loss varies with the length of the guide in a rather
complicated manner, as shown in (11). Equation (11) vividly
demonstrates the importance of the modal coupling term. Since
the factor

(15)

(where , , and are the propagation
constants for the coupling modes, andis the distance from
the entrance of the waveguide to the point of interest along the
guide) determines the importance of the coupling term, let us
now examine this factor closely. The function is largest
when and begins to diminish and approaches zero
when increases. This means that the cross-product terms in
(11) (i.e., [Part 2]) are important when the difference between
the propagation constants of the propagating modes that are
excited in the waveguide is small and/or whenis small,
such that the product is small. This condition
is particularly true when the transverse dimensions of the
waveguide are very large, such as in the BWG case that we

considered. It is also noted that under certain conditions, [Part
2] can be negative. This means that the total power loss can be
less than that given by [Part 1], the part representing only the
additive aspect of power loss by each mode in a multimode
waveguide.

When , then , and the coupling terms in
(11) [Part 2] approach zero. This means that when ,
[Part 2] 0, and the usual decoupled result given by [Part
1] in (11) becomes valid. Thus, as , the power loss for
each mode in the multimode waveguide is additive.

III. A PPLICATION TO BWG NOISE

TEMPERATURE COMPUTATIONS

We shall now apply the above theory to calculate the
conductivity loss (power loss) in a large BWG tube. The noise
temperature contributed by the conductivity loss in a BWG can
then be easily computed. Computed results are compared with
measured data from an experiment, validating the theory.

Large BWG-type ground-station antennas are generally de-
signed with metallic tubes enclosing the BWG mirrors. The
scattered field from a BWG mirror is obtained by the use of a
physical optics integration procedure with a Green’s function
appropriate to the circular waveguide geometry [10]. In this
manner, the coefficients of the circular waveguide
modes that are propagating in the oversized waveguides are
determined.

Knowing the coefficients , one may calculate
the tangential magnetic fields for the TE and TM modes
from (7) and (9). The total tangential magnetic field is the
sum of these tangential magnetic fields. Substituting the total
tangential magnetic field into (5) and carrying out the integral
in (5) numerically, one may readily obtain the total power
loss . This numerical technique is quite general; it can be
applied to a metal tube waveguide of arbitrary shape. Another
way may also be used: knowing for the modes in
a circular metal tube (sleeve) waveguide or in a rectangular

[Part 1] (12)

[Part 2]

(13)
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Fig. 3. Experimental setup.

metal tube waveguide, one may derive analytic expressions
for the total power loss .

The above numerical approach was used to calculate the
conductivity loss of a short length of BWG tube [11]. The
experiment utilized a 3.92-m-long 2.5-m-diameter structure
steel tube and a very sensitive noise temperature measuring
radiometer (see Figs. 3 and 4). Noise temperature comparisons
were made between several different horns radiating in free
space and radiating into the BWG tube. The experiment also
included measurements with the steel tube and the tube lined
with aluminum sheets. Utilizing the measured conductivity of
the aluminum and steel [12] (see Table I) and the computed
modes in the BWG tube, a conductivity loss was computed
and converted into a noise temperature prediction. For the
14.7-dBi gain horn, the and modes to
were included, and for the 22.5 dBi gain horn, modes to

were included. The following formula was used for
the conversion:

Noise Temperature in K (16)

where is the total power loss, is the given total input
power, and is the ambient temperature in K (for room tem-
perature, K). A comparison of the measurement
with both the new theory (11) and the textbook theory (3) is
shown in Table II. The most dramatic difference was with the
higher gain (22.5-dBi) horn. It was this experimental result
which showed that the result obtained according to (3) was
incorrect. The measurement was 0.1 K 0.1 K and there
was no question that the calculation of 2.6 K from (3) was
significantly outside the range measurement uncertainty. The
explanation can be seen in Fig. 5, which plots the attenuation
loss as a function of tube size. Because the high-gain horn
does not “illuminate” the wall until further down the tube
from its aperture plane, there is only a very small loss near
the aperture. This clearly demonstrates the fact that the power
loss is not linearly dependent on, and thus validates the
analysis.

(a)

(b)

Fig. 4. Measurement setup. (a) Horn in free space. (b) Horn with BWG tube.

IV. CONCLUSIONS

The concept of expressing power loss along a given uniform
waveguide in nepers/meter must be used with caution. This
concept is only generally true for single-mode unidirectional
propagation. When more than one mode exists simultaneously,
the power loss is no longer linearly proportional to the
length of waveguide. Depending on the differences for the
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Fig. 5. Noise temperature versus tube length for 22.5-dBi gain horn.

TABLE I
ELECTRICAL CONDUCTIVITIES OF SHROUD MATERIALS [12]

TABLE II
COMPARISON OFEXPERIMENTAL AND THEORETICAL RESULTS. THEORETICAL

RESULTS ARE CALCULATED FROM (11) AND (16) AND FROM (3) AND (16)

Calculated

Measured, K New Method
(11), K

Textbook Method
(3), K

22.5-dBi gain horn
with steel tube

0.1� 0.1 0.1 2.6

14.7-dBi gain horn
with steel tube 2.5� 0.4 2.3 3.0

14.7-dBi gain horn
with aluminum tube 0.2� 0.1 0.09 0.11

propagation constants of the coexisting propagating modes
and the length of the waveguide, the total power loss may
be more than, equal to, or less than the proportional sum of
the power losses for each mode propagating separately, as
shown in (11).

Accurate formulas for the total power loss by taking mode
coupling into account can be derived for an arbitrarily shaped
conducting tube, circular conducting tube, and rectangular
conducting tube. The factor [see (15)]—where

, with being the differences between the
propagation constants of various modes propagating simulta-
neously in the conducting tube, andbeing the length of the
waveguide from the source plane to the plane of interest along
the guide—appears to be the governing factor that controls the
importance of mode coupling between modeand mode

in affecting the total power loss calculation. Since the factor
approaches zero asapproaches infinity, the effect of

the term containing this factor approaches zero, indicating the
diminishing effect of mode coupling on the total power-loss
calculation. Since in order that may approach
a large value quickly, two possibilities exist.

1) If is close to , as in the case of a very large guide,
then must be very long in order that may be large,
indicating that the mode-coupling effect can affect the
total loss calculation for a very long distance from the
source plane.

2) If is not close to , as in the case of a smaller guide,
then can be relatively short for to be large enough so
that the term may be negligible, indicating that the
mode coupling term only affects the total loss calculation
for a relatively short distance from the source plane.

When applied to the JPL millimeter-wave BWG case, one
notes that is very close to . The newly developed loss
formula for an oversized circular conducting tube was thus
used to calculate the additional noise temperature contribution
due to the presence of a protective shroud surrounding a
millimeter-wave BWG.

ACKNOWLEDGMENT

The authors wish to thank Dr. V. Jamnejad of the JPL,
Pasadena, CA, and the reviewer for their careful reading of
this paper and their very helpful comments. They also wish
to thank M. Franco of the JPL for his assistance in obtaining
the experimental results.

REFERENCES

[1] J. A. Stratton, Electromagnetic Theory.New York: McGraw-Hill,
1941, pp. 543–544.

[2] R. E. Collin,Field Theory of Guided Waves.New York: McGraw-Hill,
1960, p. 341.

[3] C. Yeh, Dynamic Fields, American Institute of Physics Handbook,3rd
ed., D. E. Gray, Ed. New York: McGraw-Hill, 1972.

[4] S. Ramo, J. R. Whinnery, and Van Duzer,Fields and Waves in Modern
Communications. New York: Wiley, 1967, pp. 413, 417.

[5] R. F. Harrington,Time Harmonic Electromagnetic Field.New York:
McGraw-Hill Book, 1961, pp. 73, 255, 376.

[6] N. Marcuvitz, Waveguide Handbook(MIT Radiation Lab. Series),
New York: McGraw-Hill, 1951, vol. 10, p. 25.

[7] R. C. Chou and S. W. Lee, “Modal attenuation in multilayered
coated waveguides,”IEEE Trans. Microwave Theory Tech.,vol. 36,
pp. 1167–1176, July 1988.

[8] J. J. Gustincic, “A general power loss method for attenuation of cavities
and waveguides,”IEEE Trans. Microwave Theory Tech.,vol. MTT-11,
pp. 83–87, Jan. 1963.

[9] D. A. Bathker, W. Veruttipong, T. Y. Otoshi, and P. W. Cramer,
“Beam–waveguide antenna performance predictions with comparisons
to experimental results,”IEEE Trans. Microwave Theory Tech.,vol. 40,
pp. 1274–1285, June 1992.

[10] A. G. Cha and W. A. Imbriale, “A new analysis of beam–waveguide
antennas considering the presence of a metal enclosure,”IEEE Trans.
Antennas Propagat.,vol. 40, pp. 1041–1046, Sept. 1992.

[11] W. A. Imbriale, T. Y. Otoshi, and C. Yeh, “An analytic technique for
computing the conductivity loss in the walls of a beam waveguide
system,” presented at the URSI Int. Conf., Kyoto, Japan, Aug. 25,
1992.

[12] T. Y. Otoshi and M. M. Franco, “The electrical conductivities of
steel and other candidate materials for shrouds in a beam–waveguide
antenna system,”IEEE Trans. Instrum. Meas.,vol. 45, pp. 77–83, Feb.
1996.



IMBRIALE et al.: POWER LOSS FOR MULTIMODE WAVEGUIDES AND ITS APPLICATION TO BWG SYSTEMS 529

W. A. Imbriale (S’64–M’70–SM’91–F’93) re-
ceived the B.S. degree in engineering physics from
Rutgers University, New Brunswick, NJ, in 1964,
the M.S. degree in electrical engineering from the
University of California at Los Angeles, in 1966,
and the Ph.D. degree from the University of Illinois
at Urbana-Champaign, in 1969.

He is currently a Senior Research Scientist
in the Communications Ground System Section,
Jet Propulsion Laboratory (JPL), Pasadena, CA,
where he is leading the activities for several

advanced technology developments for large ground-station antennas as
well as supporting advanced technology in lightweight spacecraft antennas.
Previously, he was the Assistant Manager for Microwaves, Ground Antennas
and Facilities Engineering Section, responsible for all the technical activities
associated with the RF design and development of the large ground-based
antennas of the DSN. In 1991, he was on a six-month temporary assignment as
a Foreign Research Fellow at the Institute of Space and Astronautical Science,
Japan, working on mesh deployable spacecraft antennas and BWG ground
antennas. During the 1980’s, he was Manager of the Radio Frequency and
Microwave Subsystem section, responsible for the research, development, and
implementation of the RF and microwave subsystems used in the deep space
network (DSN). He was Manager during the critical period of equipment
delivery for DSN support to the voyager mission, which included upgrades
to virtually all telecommunications subsystems. Prior to joining JPL in 1980,
he worked with the TRW Defense and Space Systems Group, where he was
the Subproject Manager for the Antennas of the TDRSS program. He has
lectured and taught engineering courses at several local schools, including
UCLA and USC. He is also a Consultant to Industry on all aspects of antenna
analysis and design.

Dr. Imbriale is a member of the International Union of Radio Science
Commission B, and a member of the Sigma Xi, Tau Beta Pi, and Eta
Kappa Nu honor societies. He was a member of the Ad-Com Committee
of the IEEE Antennas and Propagation Society and general chairman of the
1995 International IEEE AP-S International Symposium held in Newport
Beach, CA. From 1993 to 1995, he was a distinguished lecturer for the
IEEE Antennas and Propagation Society, speaking on BWG antennas and
the evolution of the deep-space network antennas. He was also the recipient
of two Best Paper Awards.

T. Y. Otoshi (S’53–M’56–SM’74–F’94–LF’95)
was born September 4, 1931, in Seattle, WA. He
received the B.S.E.E. and M.S.E.E. degrees from
the University of Washington, Seattle, in 1954 and
1957, respectively.

From 1956 to 1961, he was a Member of the
Technical Staff at Hughes Aircraft Company, Culver
City, CA, where he was involved in guided-missile
checkout equipment development, microwave
primary standards, radome and antenna research,
and the development of microwave components.

In 1961, he joined the Communications Elements Research Section, Jet
Propulsion Laboratory (JPL), California Institute of Technology, Pasadena,
CA. He has been engaged in the analysis and calibration of microwave
networks and low-noise antenna systems, studies of reflector surface materials,
radio-science projects, group delay and ranging measurement projects, antenna
multipath studies, VLBI, and the development of precision frequency-stability
measurement techniques for deep-space tracking stations. In recent years, he
has been involved in the development of a dual-passband low-noise dichroic
plate, and also in BWG antenna evaluations involving noise temperature,
antenna efficiency, and frequency-stability measurements. He has authored
numerous published articles in professional journals on the above subjects. In
June 1994, he began work in the Spacecraft Antennas Group, and has since
developed low-gain antennas for Cassini and Mars Pathfinder Spacecraft. He
is currently a Senior Member of the Engineering Staff, Antenna Microwave
Engineering Group, Communications Ground System Section.

Mr. Otoshi is a member of Tau Beta Pi and Sigma Xi. He received a NASA
Exceptional Service Medal in 1994, 17 NASA New Technology Awards, and
7 NASA Group Achievement Awards.

C. Yeh (S’56–M’63–SM’82–F’85) was born in
Nanking, China, in 1936. He received the B.S.,
M.S., and Ph.D. degrees in electrical engineering
from the California Institute of Technology,
Pasadena, in 1957, 1958, and 1962, respectively.

In 1962, he joined the University of Southern
California, as an Assistant Professor of electrical
engineering, and became an Associate Professor
in 1967. In 1967, he moved to the University of
California at Los Angeles (UCLA), as an Associate
Professor of engineering, and became a Professor

in 1972. Throughout more than 30 years of his professional career, he was
a Consultant to many industrial companies, such as the Hughes Research
Laboratories, the Dikewood Corporation, and the Aerospace Corporation. In
1992, he left UCLA, and joined the Jet Propulsion Laboratory (JPL), Pasadena,
CA, where he is currently a Consulting Engineer. Because he has focused
his effort working on pioneering research in electromagnetic waves, many of
his publications were widely cited, e.g., he was the first to solve the problem
of: 1) elliptical dielectric waveguides or optical fibers; 2) the diffraction
of waves by an elliptical or parabolic dielectric cylinder; 3) reflection and
transmission of electromagnetic waves by a relativistically moving dielectric
slab or halfspace; 4) scattering of electromagnetic waves by arbitrarily shaped
dielectric bodies; 5) scattering of a single submicron particle by focused laser
beams; 6) propagation of optical waves in an arbitrarily shaped fiber, fiber
couplers, or integrated optical circuit by the scalar beam propagation method;
7) single-mode optical waveguides by the vector finite-element method;
8) a random-access protocol for unidirectional ultra-high-speed (multigigabit
rate) optical-fiber network; 9) dielectric ceramic ribbon waveguide—an ultra-
low-loss (less than 5 dB/km) millimeter/submillimeter dielectric waveguide;
and 10) propagation of wavelength division multiplexed soliton pulses in a
nonlinear fiber, etc.

Dr. Yeh is a member of the International Union of Radio Science
Commission B, Eta Kappa Nu and Sigma Xi, and is a Fellow of the Optical
Society of America.


